
Dart
Gilad Bracha for the Dart Team

Part I:
Overview

Why Dart?
We want to improve the state of the art of Web
Programming

Web Programming
Web Programming has huge Advantages:
1. Zero-install
2. Automatic update
3. Ubiquity

Web Programming
Web Programming has huge Advantages:
1. Zero-install
2. Automatic update
3. Ubiquity

But ...

Web Programming
Web Programming has huge Advantages:
1. Zero-install
2. Automatic update
3. Ubiquity

But ...

Web Programming
Web Programming has huge Advantages:
1. Zero-install
2. Automatic update
3. Ubiquity

But only works well for
small programs

Web Programming
Web Programming has huge Disadvantages:
● Lack of program structure

○ Unpredictable performance
○ Infinite Install (every run is an install) => slow startup
○ Poor tooling
○ Very poorly suited for software engineering

● Lack of standard libraries -
○ collections
○ MVC
○ Low level communication between client and server

Very hard to create large applications

Web Programming
If you want to appreciate how much fun it is to
build large web applications, I recommend:

● wtfjs.com or, for even more fun, watch Wat
● More seriously, read Steve Souders who will

tell you how the masters do it, e.g., put code
in comments to control when it loads

Enter Dart
A new language and platform for web
programming

The Goal
Web applications should be competitive with
native applications, in terms of:
● Functionality
● Performance
● Ease of Development

The Goal
Web applications should be competitive with
native applications, in terms of:
● Functionality
● Performance
● Ease of Development

For example, swarm

Constraints
Instantly familiar to the mainstream
programmer

Efficiently compile to Javascript

Dart in a Nutshell
Purely Object-Oriented, Class-based,
Single Inheritance

Dart in a Nutshell
Purely Object-Oriented, Class-based,
Single Inheritance with Optional Typing,
Mirror-based Reflection and Actor-
based Concurrency

Dart in a Nutshell
Purely Object-Oriented, Class-based,
Single Inheritance with Optional
Typing, Mirror-based Reflection and
Actor-based Concurrency

Roadmap

Two paths for executing Dart:

dart2js - Compile Dart to Javascript; should
perform competitively with handwritten JS.
Runnable in any modern browser.

VM: Higher performance, access to native
platform on server side. Embeddable, V8 style

Eclipse based Dart Editor for development

What's it like?
You can try out dartboard at try.
dartlang.org

Part II:
Optional
Types

Mandatory Types
Static type System regarded as mandatory

Maltyped program are illegal

Mandatory Types: Cons

Expressiveness curtailed
Imposes workflow
Brittleness

A History of Non-Mandatory
Types
Common Lisp
Scheme (soft typing)
Cecil
Erlang
Strongtalk
BabyJ
Gradual Typing

A History of Non-Mandatory
Types
Common Lisp
Scheme (soft typing)
Cecil
Erlang
Strongtalk
BabyJ
Gradual Typing

Optional Types
Syntactically optional
Do not affect run-time semantics

Execution depends on Type
Checking

Execution
 Type
Checking

Execution independent of Type
Checking

Execution
 Type
Checking

Optional Types in Dart
Syntactically optional
Do not affect run-time semantics

What about Type Inference

Type Inference relates to Type Checking as
Type Checking relates to Execution.

Type Inference best left to tools

Type Checking depends on Type
Inference

 Type
Checking

 Type
Inference

Type Checking independent of Type
Inference

 Type
Checking

 Type
Inference

Don't Get Boxed In!

Type Checking

 Type
Inference

Execution

Mandatory Types: Pros

In order of importance:
● Machine-checkable documentation
● Types provide conceptual framework
● Early error detection
● Performance advantages

Optional Types
Syntactically optional
Do not affect run-time semantics

Optional Types in Dart

So, what's actually new?

Didn’t we have all this in Strongtalk in
1993?

Type Assertion Support

Dart's optional types are best thought of as a
type assertion mechanism, not a static type
system

Dart types at Runtime

During development one can choose to validate
types
● T x = o; assert(o === null || o is T)
● By default, type annotations have no effect

and no cost
● Code runs free

Not your Grandfather's Type System

Not a type system at all;

Rather, a static analysis tool based on
heuristics, coupled to a type assertion system

What about a Real, Sound Type
System?

There is no privileged type system, but
pluggable types are possible.

For example, one can write a tool that
interprets existing type annotations statically

Part III:
Mirrors

Mirrors in Dart

Mirror-based Reflection
● Originated in Self
● Used in Strongtalk, Java (JDI & APT),

Newspeak
● Caveat Emptor: WIP!

Mirrors Overview

Classic OO reflection:

o.getClass().getMethods();

Mirrors are separate objects that reflect other
objects.

If you don't have the right mirror, you cannot
reflect, addressing difficulties in deployment,
distribution, security

Mirrors Overview

If you want to know more, check out:
My blog
OOPSLA 2004 paper
2010 video

A Look at Dart's Mirrors

In Dart, one isolate can reflect on another.

API is necessarily asynchronous in places.

We seek to minimize asynchrony

Synchronous Mirrors

ObjectMirror om = ... ;

ClassMirror cm = om.getClass();

for (var p in
 cm.fields.getKeys().map((f) => [f, om.invoke
(f, [], {})])
) print('${p[0]}: ${p[1]}');

Synchronous Mirrors

ObjectMirror om = ... ;

ClassMirror cm = om.getClass();

for (var p in
 cm.fields.getKeys().map((f) => [f, om.invoke
(f, [], {})])
) print('${p[0]}: ${p[1]}');

Map<String, VariableMirror>

Synchronous Mirrors

ObjectMirror om = ... ;

ClassMirror cm = om.getClass();

for (var p in
 cm.fields.getKeys().map((f) => [f, om.invoke
(f, [], {})])
) print('${p[0]}: ${p[1]}');

ObjectMirror

Asynchronous Mirrors

ObjectMirror om = ...;

Future<ClassMirror> cmf = om.getClass();
cmf.then(
 (ClassMirror cm) {
 for (var p in
 cm.fields.getKeys().map((f) => [f, om.invoke
(f, [], {})])
) p[1].then((v) => print('${p[0]}: $v'));
 })

Asynchronous Mirrors
ObjectMirror om = ...;

Future<ClassMirror> cmf = om.getClass();
cmf.then(
 (ClassMirror cm) {
 for (var p in
 cm.fields.getKeys().map((f) => [f, om.invoke
(f, [], {})])
) p[1].then((v) => print('${p[0]}: $v'));
 }
)

Future<ObjectMirror>

Asynchronous Mirrors

ObjectMirror om = ...;

ClassMirror cm = om.getClass();
for (var p in
 cm.fields.getKeys().map((f) => [f, om.invoke
(f, [], {})])
) p[1].then((v) => print('${p[0]}: $v');

Reflection and Minification

Web apps often optimized for size by
eliminating unused code and symbols

Reflecting on code that has been optimized
away, or whose name has been minified, is not
possible.
Options:
● Do not minify if program uses reflection
● Provide mechanism to selectively protect

against minification

Reflection and Minification

Web apps often optimized for size by
eliminating unused code and symbols

Reflecting on code that has been optimized
away, or whose name has been minified, is not
possible.
Options:
● Do not minify if program uses reflection
● Provide mechanism to selectively protect

against minification

Summary

Dart is a new language for web programming
● Deployable to any modern web browser via

compilation to Javascript
● Designed for large projects: emphasis on

performance and software engineering
● Open source (BSD)
● Currently a technology preview -

everything is subject to change

Check it out a dartlang.org

